
Operating System Framed in Case of Mistaken Identity

Measuring the success of web-based spoofing attacks on OS password-entry
dialogs

Cristian Bravo-Lillo1

cbravo@cmu.edu
Lorrie Cranor1,2
lorrie@cs.cmu.edu

Julie Downs3

downs@cmu.edu

Saranga Komanduri2
sarangak@cmu.edu

Stuart Schechter4
stus@microsoft.com

Manya Sleeper2
msleeper@cmu.edu

Carnegie Mellon University, 1Engineering and Public Policy, 2Computer Science, 3Social and Decision Science
4Microsoft Research

Abstract
When asking users to enter credentials, today’s desktop op-
erating systems often use windows that provide scant ev-
idence that a trusted path has been established; evidence
that would allow a user to know that a request is genuine
and that the password will not be read by untrusted prin-
cipals. We measure the efficacy of web-based attacks that
spoof these operating system credential-entry windows to
steal users’ device-login passwords. We recruited 504 users
of Amazon’s Mechanical Turk to evaluate a series of games
on third-party websites. The third such website indicated
that it needed to install software from the publisher that
provided the participants’ operating system: Microsoft’s Sil-
verlight for Windows Vista/7 users and Apple’s QuickTime
for Mac OS users. The website then displayed a spoofed
replica of a window the participant’s client operating system
would use to request a user’s device credentials. In our most
effective attacks, over 20% of participants entered passwords
that they later admitted were the genuine credentials used
to login to their devices. Even among those who declined to
enter their credentials, many participants were oblivious to
the spoofing attack. Participants were more likely to confirm
that they were worried about the consequences of installing
software from a legitimate source than to report that they
thought the credential-entry window might have appeared
as a result of an attempt to steal their password.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology, Interac-
tion styles; I.3.6 [Computing Methodologies]: Method-
ologies and Techniques, Interaction Techniques

Keywords
trusted path, user interface, spoofing attack, usable security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

1. INTRODUCTION
When a user interacts with a computing device, she may

actually be communicating with a number of different prin-
cipals, including the operating system (OS), installed appli-
cations, or websites. The security of many user experiences
rests on the assumption that there is a trusted path from
the user to the principal she is communicating with, and
that the user can correctly identify (authenticate) this prin-
cipal. It is assumed that there is a trusted path between the
user and the OS for such purposes as authenticating with
a shared secret (e.g. a password) and authorizing access to
capabilities that may impact the security of the system.

In this paper, we measure the efficacy of web-based attacks
that spoof OS windows to trick users of Mac OS X (Mac OS)
and Windows Vista/7 (Windows) into entering their device
(OS-level) login credentials. The spoofing attacks we tested
exploit the fact that these operating systems often request
users’ device credentials by overlaying windows on top of
windows from other principals.

Stealing credentials via spoofing requires two separate forms
of social engineering. First, the attacker must give the user
motivation to enter her credentials. This means creating a
task or scenario that the user wants to complete, or believes
she needs to complete, and that can only be completed if
she provides her credentials. In the extreme, this could be
as simple as presenting a window that can be dismissed only
by entering credentials, and that the user will want to close.
Second, the attacker must spoof the credential-entry inter-
face in place of a genuine interface with sufficient fidelity
that the user will trust it.

In our attacks, we tried to motivate users to enter creden-
tials by convincing them that they should install software,
and that their credentials were required to do so. In many
contexts, credentials are indeed required to install software.
On Mac OS, installing software requires a privilege eleva-
tion, which causes a credential-entry window to appear in
the center of the screen. On Windows, User Account Con-
trol (UAC [18]) is a protection mechanism that controls the
elevation of privilege to allow installations and other sensi-
tive actions. As with Mac OS, it uses a window to verify user
intent before elevating. However, unlike Mac OS, its default
configuration will only request a username and password if
the current user does not have the administrator privilege
required for elevation. Furthermore, Windows attempts to

differentiate UAC windows from other windows by dimming
the contents of the rest of the screen when a UAC window
is present.

Windows applications may also request that the OS present
the Windows credential-entry experience (CredUI) [14] in
situations where the user should re-authenticate. Notably,
Microsoft Outlook may request the users’ credentials via
CredUI, and Microsoft Lync may request credentials through
a custom interface, even if the user has already provided
these same credentials to login to her PC. CredUI does not
dim the portions of the users’ screen controlled by other
principals.

On Mac OS, we spoofed the password-entry window that
appears when users need to elevate privileges to authorize
software installs (Figure 1a). For Windows users, we tested
both a spoofed User Account Control [18] window (Fig-
ure 1b) and a Windows CredUI [14] window (Figure 1c).

Studying security behavior is difficult, as individuals’ real-
world behaviors may differ from how they behave in a lab-
oratory environment. The knowledge that a study pertains
to security may cause users to focus on security more than
they otherwise would. Thus, asking participants to evaluate
warnings directly may lead to answers that are less sponta-
neous [2]. We used the subterfuge of an Amazon Mechani-
cal Turk task to evaluate third-party online games to create
a situation in which real users would encounter a spoofing
attack on what appeared to be a third-party site, outside
of the control of researchers. While our study design lim-
ited our participant pool to users of Mechanical Turk, the
methodology increased ecological validity.

We asked 504 workers to evaluate a series of three online
games, hosted on third-party websites, for such factors as
level of enjoyment and age appropriateness. The third such
website, controlled by us, spoofed an OS credential-entry
window requiring device-login credentials.

Under our experimental conditions, we found that in over
20% of trials, our most effective attacks yielded passwords
that users later admitted that were their genuine device login
passwords. Furthermore, when participants who refrained
from revealing their credentials were asked why they did
so, only 35.3% confirmed that they thought the password-
entry interface might be an attempt to steal their passwords
(a lack of trust in the interface). Many of the remaining
participants may have oblivious to the attack, but simply
weren’t motivated to enter their credentials to install new
software.

The consequences of an attacker obtaining device creden-
tials are different than, and in some cases may be more se-
vere than, an attacker gaining website credentials. They
also vary greatly with the security posture of the victim
or the victim’s organization. If the user’s device allows re-
mote access and no firewalls block it, an attacker with the
username and password will obtain complete control of the
user’s device account and will be able to install backdoors
and key loggers. If the compromised user has administrative
access to the machine, the attacker’s keylogger can collect
usernames and passwords from other users and the attack
can snowball. Enterprise users may be more likely to have
remote access restricted by firewalls, but in many cases a
Windows domain username and password may be sufficient
to allow a new computer to be added to a domain, allow-
ing an attacker to bypass firewalls. Even if compromised
credentials cannot be used for remote device access, many

enterprises also allow access to web- and smartphone-based
email clients using these username and password credentials.

(a) MacOS treatments

(b) UAC treatments

(c) CredUI treatments

Figure 1: Our spoofed credential-entry windows

2. RELATED ATTACKS
The spoofable credential-entry windows we examine in

this paper are one instance of a trusted path vulnerability.
More familiar examples are phishing of website credentials,
in which both emails and websites are spoofed, and scare-
ware, in which attackers spoof infection alerts that appear to
come from already-installed trusted software to trick users
into installing malware posing as antivirus software.

Felten provides the earliest demonstration of a web spoof-
ing attack, describing it as allowing “an attacker to create a
‘shadow copy’ of the entire World Wide Web”to observe user
behavior and capture user information [9]. The bulk of web
spoofing attacks take the form of phishing and its variants,
in which attackers spoof email, text messages, voice, and
other communications channels to lure victims to spoofed
websites. When users login to the spoofed website, their cre-
dentials are sent to the attacker. Phishing succeeds because
many users cannot, or do not, authenticate websites. Many
users instead rely on the content area of the page, assuming
that the look and feel of a website are difficult to copy [6].
Such users fail to properly interpret indicators of website
authenticity [7]. Increasingly sophisticated spoofing attacks
have been implemented, including attacks on more modern
browsers [29], attacks that use a graphical element to cover

up the SSL lock icon [15], and attacks that spoof the entire
browser window, including the certificate functionality [16].

Phishing attacks are similar to the attack in our work
in that they use spoofing to steal credentials, motivating a
user to login via a URL that leads to the spoofed site and
then convincing the user to trust the spoofed site. Scare-
ware attacks are similar to our work in that they often spoof
windows that appear to come from trusted client software.
Scare tactics motivate users to install fake antivirus software.
They create the illusion that the client is already infected
with malware. Once installed, the fake antivirus software is
used to trick the user into paying to keep the software ‘up
to date’. Stone-Gross et al. summarize the methods and
economics behind such fake antivirus attacks [26].

One of the challenges in understanding the scope of the
scareware problem is that fake antivirus software is installed
not only through social engineering scare tactics, but also
through vulnerabilities, including browser vulnerabilities that
allow attackers to perform ‘drive-by downloads’. In the one-
year period from July 2008 to June 2009, Symantec reports
having received 43 million attempts to install rogue security
software [27] (Symantec has not released more up-to-date
statistics.) Rajab et al. claim that fake antivirus attacks
date back as far as 2003, and found that, from January 1
2009 to January 31 2010, such attacks were increasing as a
percent of domains containing malware from an incidence
rate of 3% to 15% [21]. The fraction of fake antivirus sites
that use social engineering as an installation mechanisms
also increased to 90% [21].

The best publicly-available statistics on the rate at which
users are tricked by scareware come from Cova et al., who
discovered servers hosting rogue antivirus campaigns that
reported event counts such as the number of users who
downloaded the scareware [4]. The researchers discovered
that 7.7% of users who received javascript that simulated
an antivirus scan initiated a download of the scareware.
The actual per-attack success rates were lower as downloads
may be aborted before installation commences. Only 5%
of machines that presented the fake scan reported back to
the attacker’s infrastructure that installation was successful
(roughly two thirds of the 7.7% that downloaded the scare-
ware.) [3].

3. EXPERIMENTAL DESIGN
We designed our experiment to determine the fraction of

users who would enter their passwords into a spoofed OS
window, the fraction who would detect that the window was
spoofed, and what clues (if any) users looked for to detect
if a window was spoofed.

3.1 Experimental procedure
Our experiment mimicked the experience of going to a pre-

viously unvisited website and receiving a spoofed installation
window designed to steal username and password creden-
tials. The rules of informed consent dictate that we disclose
the identity of our research institution before collecting data
from users. We thus needed a study design that would allow
us to minimize the likelihood that participants’ trust in our
research institution would cause them to behave less safely
than they otherwise would.

We received Institutional Review Board (IRB) approval
to create a deception study in which participants were told
that their job was to help us evaluate third-party gaming

websites. We did so because any trust participants had in
our institution should not extend to third-party websites,
and so before directing participants to these sites we noti-
fied participants that these sites were outside our control.
However, the simulated attacks took place on a confeder-
ate gaming website, which we secretly did control. We use
the term confederate, because this website was used in much
the same way human confederates are employed in other hu-
man subjects experiments: presenting the illusion of being a
third-party outside the influence of the researchers, creating
a situation to which participants could respond (the spoofing
attack), and recording participants’ behaviors in situations
in which participants may have believed themselves to be
free from researchers’ observation.

3.1.1 Recruitment and screening
Participants volunteered for a Human Intelligence Task

(HIT) we had posted on Amazon’s Mechanical Turk, as de-
tailed in Appendix A.

Participants had to be at least 18 years old, in the United
States while taking the survey, and have an MTurk approval
rating of at least 95%. Participants must not have partici-
pated in any previous similar study from our lab, including
earlier versions (pilots) of this experiment. We used browser-
submitted HTTP headers to verify that participants were
using either Windows Vista/7 or Mac OS X or higher. We
paid $1.00 to each participant who qualified for and com-
pleted our survey.

3.1.2 Tasks
Upon accepting the HIT, we redirected participants to a

survey site operated in the domain of our research institu-
tion. Our survey requested that the participant maximize
the browser window so that, when participants reached the
third-party website conducting the simulated attack, the ap-
pearance of the spoofed window within the browser content
area would be less suspicious. We posited that an attacker
could use social engineering to convince most users to max-
imize their browsers.

Our survey presented three game evaluation forms in se-
quence, each of which asked participants to click on a link
opening a third-party online gaming website (a different one
for each form), play an online game, and then answer ques-
tions about the game. Each form had a link to the game,
and participants were instructed to open the link while press-
ing the ctrl (Windows) or command (Mac OS) key, opening
a new browser tab. Participants were asked to play each
game for two to three minutes, then close the browser tab
and return to the survey form. The evaluation form, given in
Appendix B, asked about the game’s enjoyability and age-
appropriateness, and gave participants the option to report
being unable to play a game.

The first two games were real games operated by real gam-
ing websites outside of our control. These two tasks were
included to add legitimacy to the subterfuge that we were
indeed soliciting evaluations of third-party games. The third
and final website, yourgamefactory.net, was the confeder-
ate website that we secretly operated. It was at this website
that participants were told that they needed to install new
software to play the game and then saw a spoofed credential-
entry window. The exact message of what would be installed
and the layout of the spoofed windows was determined by
the participant’s treatment group.

If participants entered their credentials into the confed-
erate website, they encountered a page that explained that
the game had been removed. Regardless, once participants
completed evaluating the game, which simply required them
to check a box indicating that they couldn’t or wouldn’t play
it, they were presented with our exit survey.

3.1.3 Exit survey
The biggest methodological challenge we faced was to de-

termine if a participant’s credentials would have been com-
promised by our simulated attack. In other words, had they
typed their genuine device username and password into the
credential-entry window?

Even if it were ethical to send the passwords to our servers
without participants’ consent, there would be no sure way
to tell if the password was legitimate without trying to gain
access to the participants’ computers—a criminal act. Sim-
ply asking participants to tell us if they had entered their
genuine credentials seemed likely to result in underreport-
ing. Upon discovering our deception, many would surely
be both tempted to deceive us in their response. Further-
more, participants might have legitimately feared that we,
as perpetrators of a deception, might misuse their creden-
tials. If they feared their credentials might still be abused,
they might justifiably have believed their safest action was
to deny that the credentials they revealed were indeed gen-
uine.

While we did not immediately send the contents of the
password field to our server, we did send its length l. If the
field was non-empty (l > 0), we used this value in the exit
interview when asking the following ‘yes’ or ‘no’ question:

You entered l characters into the password field of the dialog box.
This password you entered is stored in your browser but we have
not sent your password to our servers. Was the password you
entered a real password for an account on your computer?

© Yes, I did enter a genuine password (we’ll immediately delete
any records of the password we kept in your browser)

© No, I did not enter a genuine password

If the answer was no, we used a follow-up question to
try to identify participants who had entered their genuine
passwords but had decided to deny doing so.

Since you did not enter a genuine password into the password field
of the dialog box, may we collect the contents of this field for anal-
ysis?

© Yes, since the password I entered is not a genuine password
you may send it to your servers.

© No, the password I entered was actually a genuine pass-
word. Please immediately delete any records of it in my
browser and do not send it to your servers for analysis.

© No, I have another reason for not wanting the password I
entered sent to your servers (please explain)

We designed this question so that if participants had en-
tered genuine credentials, they would believe the safest op-
tion was to admit to doing so. If participants did not enter
their genuine credentials, they would only need to enter an
arbitrarily short explanation to keep the values they entered
private. Participants who admitted that their password was
genuine in either of the above two questions would be con-
sidered to be compromised.

If a participant did not enter a genuine password, we first
asked them to use freeform text to “please explain why you
didn’t enter your password into the password-entry window.”
We then asked participants to“please indicate which (if any)

of the following factors contributed to your decision to not
enter your password.” Participants could check any number
of options, the order of which was randomized for each par-
ticipant. The options included legitimate concerns, such as
not wanting to take the time to install software. The options
also included items that should not have been concerns, such
as fearing that updated software, published by the company
that provided their client OS, would harm their computers.
The combination of both types of options was used so that
participants would have to think about whether each option
really did match their set of concerns. Amongst the list of
options was one that stated “I thought that the password-
entry window was trying to steal my password.” Participants
who checked this option are considered wise to the spoofing
attack. Those who did not are considered oblivious to the
spoofing, or oblivious for short.

Only after these questions did we disclose the deception
and explain the purpose of the study. After doing so, we
asked participants such questions as whether they suspected
that the window was spoofed and whether they took any ac-
tions to test whether the window was authentic. At the end
of the survey we asked additional demographic questions.

3.2 Instrumentation
We instrumented the confederate gaming website to record

participants’ OS type, browser client name and version, screen
size, browser viewport size, and the position of the top left
corner of browser’s viewport relative to the top left corner
of the screen. We also recorded participants’ mouse move-
ments, clicks within the page content (which included our
spoofed window), and number of keystrokes in the username
and password field, as well as the timing of each of these
events measured in milliseconds.

If the participant tried to submit credentials using the
spoofed credential window, we encrypted the contents of the
username and password fields using a random one-time-use
symmetric encryption key retrieved from, and stored exclu-
sively by, our servers. We stored the ciphertext of the user-
name and password in the client’s browser local storage, but
discarded the key from the client so that the client could not
decrypt the ciphertext. This allowed us to reduce the risk of
storing the contents of the username and password fields in
the participants’s browser, yet gave us the option to trans-
mit the information to the server later if we obtained the
participant’s consent.

3.3 Implementing spoofed windows
We spoofed the OS window using HTML, CSS, and Java-

script. We did not use Flash or other plugins. The window
could be moved, though only within the browser content re-
gion. For all Windows treatments, we rendered the spoofed
window using the default Windows color scheme and imple-
mented a translucent chrome. We also used the same fonts
as the genuine Windows dialogs, though because they were
rendered on the client, the browser’s zoom level could cause
them to be rendered the wrong size—a problem that could
have been solved by rendering text on the server. Similarly,
on Mac OS we tried to match the OS fonts, colors, and other
aspects of the genuine window’s appearance.

Genuine credential-entry windows often have the user-
name field pre-filled. Since we simulated attacks that did
not have access to the username, these fields were left blank
in all treatments. We used the generic ‘flower’ icon to repre-

Table 1: Treatment groups. The credential-entry windows
for those treatment groups with a suffix of ‘-D’ had no can-
cel button or had a disabled cancel button, as well as the
window close box disabled.

sent the user account in the UAC dialog, as, if the user had
a user-specific icon to represent their account, the attacker
would not have access to it.

3.4 Treatment groups
Table 1 shows the 11 treatment groups in our experiment.

Participants using a browser on Windows were randomly
assigned one of 7 treatments: 3 CredUI treatments and 4
UAC treatments. Participants using a browser on Mac OS
were randomly assigned to one of 4 MacOS treatments.

CredUI
In the CredUI treatment, a webpage appeared explaining
that the game was being prepared (see Figure 2a) and, af-
ter four seconds, the spoofed CredUI window illustrated in
Figure 1c was overlaid above it. We placed the name of
the browser (e.g. “Internet Explorer” or “Chrome”) into the
heading of the window to represent the principal requesting
the password. Because we did not have a user name in our
experiments, the field was left blank and a field label, “User-
name,” was overlaid on top as it would be in the genuine
window. (We later discovered that real Windows interfaces
actually use the two-word phrase “User name.” This small
error was common to all Windows treatments.)

UAC
In the UAC1 treatment, the content of the webpage above
which the credential-entry window appeared stated that the
game required Microsoft Silverlight (Figure 2b). After four
seconds a spoofed UAC window appeared asking the par-
ticipant to consent to the installation of Silverlight and to
provide credentials to do so, as illustrated in Figure 1b.

The UAC2 treatment was identical except that the ins-
tallation window instructed participants to “verify that the
publisher of this application is Microsoft before installing it”
(see Figure 2c). If users were to check the spoofed window,
they would be reassured that Microsoft was indeed listed as
the publisher. We hypothesized that users would focus on
whether the publisher listed was Microsoft, be reassured that
the software was not a threat when they verified that pub-
lisher field matched (and was the publisher of their OS), and
would thus be less likely to notice that the window in which
the publisher field appeared was, in fact, the real threat.

Genuine UAC windows are presented on top of a dimmed

(a) Web content shown for the CredUI and CredUI-
D*treatments

(b) Variation for UAC1 treatments

(c) Variation for UAC2 treatments

(d) Variation for MacOS treatments

Figure 2: The contents of the confederate website’s pre-
installation page, over which the credential-entry window
appears, were slightly different for each treatment group.
Subfigure (a) figure shows the full page, whereas the re-
maining figures show variations from Subfigure (a).

desktop and, when credentials are required, the user name
is often already filled in. We opted not to dim the region
of the screen under our control – the web content region –
as we believed that dimming a limited portion of the screen
would raise more suspicion than it would dispel.

MacOS
With Mac OS, we simulated the installation of QuickTime
as this software is also a common browser add-on and, like
Silverlight on Windows, it would be signed by the same com-
pany that provided the user’s OS. The sequence of events
that start an installation on Mac OS begins with a dialog
that describes the software to be installed, followed by a
request for credentials. Thus, we first showed the webpage
that triggered the fake installation (Figure 2d) and, four
seconds later, showed a spoofed installation-description dia-
log (Figure 3). Only after the participant clicked to continue
with the installation did we show the spoofed password-entry

Figure 3: Spoofed installation-description dialog used exclu-
sively in the MacOS1 treatments

window (Figure 1a). Simulating the installation-description
dialog may add realism for Mac OS users who expect to see
it before entering their password. However, it also presents
the user with an additional opportunity to cancel the insta-
llation sequence before the credential-entry window appears.
For this reason we omitted several steps that users typically
see during the Mac OS installation process, such as select-
ing the filesystem location in which the application will be
stored and consenting to a license agreement.

In the MacOS2 treatment, we did away with the spoofed
installation-description window step.

Mac OS puts labels to the left of text fields, rather than
overlaying them within, so the username field was com-
pletely empty. Mac OS also centers credential-entry win-
dows on the screen—a feature that we did not replicate. We
failed to capitalize the ‘T’ in QuickTime on the “preparing
game” webpage, but capitalized it correctly in the spoofed
installation-description dialog.

Close-disabled variants
In a pilot of a spoofed UAC window we mistakenly acti-
vated the ‘Yes’ button, which submits the credentials, with-
out waiting for the user to enter characters into the username
and password field. Prior research suggests [19] that users
will often ignore most of a warning and jump straight to
their options. Many participants saw the “Yes” button and
pressed it without entering any credentials. From this early
mistake, we hypothesized that participants might be more
likely to enter their credentials if the option to dismiss the
spoofed window was deactivated.

We paired each of the above treatments with a second
treatment in which the ‘cancel’ or ‘no’ button was removed
and the window close box (the ‘X’ at the top right in Win-
dows) was disabled. These treatments are labeled with the
suffix ‘-D,’ and are otherwise identical to their suffixless
counterparts.

CredUI-D*
The final treatment, CredUI-D*, was exactly the same as
CredUI-D, except that participants were not asked to max-
imize their browsers at the start of the study. We included
this treatment to determine if it was really necessary for at-
tackers who wanted to spoof an OS window to first trick
users into maximizing their browser windows.

“Please indicate which (if any) of the following factors
contributed to your decision to not enter your password”

Figure 4: Participants who did not enter any passwords were
asked the multiple-answer question above. Participants who
picked the third option from top were categorized as ‘wise’
to the attack; the others were categorized as ‘oblivious’.

4. RESULTS
Our results reveal that spoofing attacks are effective, with

18% of participants over all treatment groups providing what
they would later admit were valid login credentials for their
device. These participants were classified as compromised.
For reasons discussed in Section 4.2, 6% of participants were
unexposed, not seeing the spoofed password-entry window.

We asked those participants who did not enter a password
to indicate which, if any, factors contributed to their decision
not to enter their password. As shown in Figure 4, 48% of
those we asked reported that they thought the password-
entry window was trying to steal their passwords, and we
classified them as wise to the attack. 36% did not provide
this factor and were classified as oblivious.

4.1 Participants
We ran our experiment between January 25 and February

5 2012, and collected results for a total of 504 participants.
Not included are an additional 28 participants who were re-
cruited but never visited the confederate gaming website.
We also did not include 15 participants who, despite our in-
structions, responded to the survey from outside the United
States.

To identify participants who may not have made consci-
entious attempts to read and answer questions, we included
a multiple-choice question that any participant should have
been able to answer correctly: “The power switch on a com-
puter is used to ?” This approach was inspired by Downs
et al. [8]. All but two participants answered this question
correctly, suggesting that the majority of participants in our
results made a conscientious attempt to read and answer our
survey.

Participants were an average of 28 years old (σ =9.6 years),
55% were male, and 78% were caucasian. The top two re-
ported occupations were ‘student’ (33%) and ‘unemployed’
(13%). To gauge their level of expertise, we asked five tech-
nical questions on topics such as encryption and web secu-
rity. No participant answered all questions correctly, 11%
were able to answer correctly 4 out of 5 questions, and 54%
answered one or no questions correctly. 28% reported knowl-
edge of at least one computer programming language. Fi-
nally, participants took an average of 17 min 23 secs (σ =18
min 15 secs) to complete the study.

Figure 5: Attack efficacy. Compromised participants entered username and password and later admitted that these were valid
login credentials for their device. Participants wise to the attack didn’t admit to entering valid login credentials, and checked
the box labeled “I thought that the password-entry window was trying to steal my password.” Participants categorized
as ‘oblivious’ were not wise to the attack, but did not fall victim because they had other reasons for not wanting to enter
their passwords. Unexposed participants may have not seen the credential-entry window (e.g. because they closed the install
window presented prior to the credential-entry window in condition MacOS1). With the exception of CredUI-D*, all treatment
groups shown above correspond to the merge of the corresponding cancel-enabled and cancel-disabled pair. Disaggregated
data can be found in Table 2. The choice of treatment, as shown above, had a statistically significant effect on the outcome.

4.2 Attack efficacy
Of the pool of 504 participants in all treatment groups of

our experiment, 142 (29%) entered one or more characters
into a spoofed password field. Recall that we used two sep-
arate questions to try to compel participants to admit the
truth if they had entered their genuine credentials. Of the
142 participants who entered a value into the password field,
38 (27%, or 8% of the total participant pool) denied that the
text that they had typed was their genuine device password
and, in response to the second question, consented for us to
see what they had typed. Another 9 (6% of the participants
who typed a password, or 2% of the total participant pool)
denied that the password was genuine, but refused to con-
sent for us to see it. The remaining 95 participants (67%
of participants who typed a password, or 18% of the total
participant pool) admitted to typing their genuine creden-
tials, and all but one did so by answering ‘yes’ to first of
the two questions. (Note, however, that participants may
have revised their answer to the first question after seeing
the second question.)

The results of each attack are presented in Figure 5, and
the disaggregated numbers are presented in Table 2. Our
research questions led us to two hypothesis tests, one to de-
termine if close-disabled treatments performed better than
their close-enabled peers and one to determine if browser-
maximization had an impact on our results. In our analysis
we use χ2 tests to indicate the statistical likelihood that dif-
ferences between treatment groups were the result of chance.
We applied eight tests, and corrected for multiple testing us-
ing the Bonferroni method, assuming α = .00625 in place of
α = .05.

In both UAC treatments, the close-disabled treatment
pair had a higher compromise rate than a close-enabled
treatment pair. In aggregate, the five paired close-disabled
treatments had compromise rates (43/215, 20%) slightly
higher than their close-enabled peers (43/237, 18%). How-
ever, the differences in attack efficacy between conditions
with enabled and disabled cancel buttons were not statisti-
cally significant (χ2(4) = 1.34, p = 0.855).

To highlight changes between the fundamental designs,
we merge close-enabled and close-disabled treatment groups
together in Figure 5 (disabling close boxes did not appear

to have a significant effect, and was applied with equal fre-
quency to each of the fundamental designs). Over the re-
maining six treatment groups, we found that the choice of
treatment group had a significant effect (after correcting for
multiple testing) on both the fraction of participants cate-
gorized as compromised (χ2(5) = 31.13, p < 0.001) and the
fraction categorized as wise (χ2(5) = 24.71, p < 0.001).

Some participants were unexposed to the spoofed password-
entry window because they closed the browser tab before
the credential-entry window could appear. Those in the
MacOS1 treatments may have aborted installation when the
spoofed installation-description dialog was displayed (Fig-
ure 3), which came before the credential-entry step.

In every group, at least one participant provided creden-
tials that they later admitted were genuine. For the Win-
dows treatments, the compromise rates in Figure 5 fall be-
tween 15% and 35%, with the maximum compromise rate
only 2.31× greater than the minimum—a relatively tight
range given the sample sizes involved. When combined,
participants in all the UAC attack treatment groups had
a higher compromise rate (57/192, 29.7%) than those in
the two CredUI attack treatments (17/93, 18.3%), though
not significant when correcting for multiple testing (χ2(1) =
4.24, p = 0.039).

Many participants who were not compromised may still
have been fooled, trusting that the credential-entry window
was genuine but failing to enter their credentials due to a
lack of motivation. More participants refused to enter their
credentials because they were concerned that “the software
I was being asked to install could harm my computer or
steal my information” (209/356, 58.7%) than because they
were afraid to enter their credentials (173/356, 48.6%). Sim-
ilarly, more participants withheld their credentials not be-
cause they detected the spoofing attack, but because they
were not motivated to install new software (80/356, 22.5%).
Furthermore, a relatively high proportion of participants
across all treatments (180/356, 50.6%) volunteered that they
did not enter their credentials because they did not know
what credentials to enter.

A greater proportion of participants in the two CredUI
treatments were wise to the attack (51/93, 54.8%) than
those in the four UAC treatments (67/192, 34.8%, χ2(1) =

10.27, p = 0.001, significant when corrected for multiple
testing.)

A disproportionately small fraction of participants were
compromised by the MacOS2 treatments (4/92, 4.4%), which
did not spoof an installation-description window before the
credential-entry window, and a disproportionately large frac-
tion were wise to it (40/92, 43.5%). In contrast, the MacOS1
treatments did present an installation-description window.
This presented participants who did not want to install Quick-
Time an opportunity to abandon the process before seeing
the credential-entry window, so 26% of participants were
not exposed to it (hence unexposed). Even accounting for
those unexposed, more participants were compromised by
the treatments that included the spoofed installation-description
window (8/101, 7.9%) than without it (4/92, 4.4%).

While the aggregate compromise rates for participants in
the Mac OS treatments were lower than for the Windows
treatments, it would be premature to conclude that Mac OS
users are less vulnerable to spoofing; we put more effort into
tuning our Windows attacks and the treatments targeted dif-
ferent software to install (Silverlight vs. QuickTime). Even
when we did present an installation-description dialog, we
skipped a number of steps in the installation ritual.

The difference between the rates at which participants
in the Mac OS treatments were wise to spoofing (63/167,
37.7%) and those in the Windows UAC treatment groups
(67/192, 34.9%) were well within the margin of error (χ2(1) =
0.31, p = 0.578).

The CredUI-D* treatment, in which participants were not
asked to maximize the browser window at the start of the
survey, did no worse than the identical treatment in which
participants were asked to do so (CredUI-D). Of those in the
CredUI-D* treatment, our instrumentation indicates that
78% already had their browser sized to consume at least 80%
of the screen’s area. It’s possible that convincing users to
maximize browser windows may raise more suspicions than
it dispels. In future experiments we may consider remov-
ing the window-maximization step, though we cannot say
with confidence that this will increase attack efficacy. UAC
windows are bigger than CredUI windows, and, therefore,
failing to maximize a small browser window might be more
likely to cause a user to become wise to a UAC-based attack
than a CredUI-based attack. While we believe that convinc-
ing users to maximize their browser windows in advance of
an attack poses little challenge to social engineers, our data
suggests that doing so may be unnecessary.

Finally, after we disclosed the deception to our partici-
pants, we asked them whether they“know that the password-
entry window was actually mimicked by the website, and not
a real password request from [their] operating system.” The
answers to this question ranged from ‘I was completely sure
that the password entry wasn’t real’ to ‘I never suspected’.
While no ‘compromised’ participants reported to be com-
pletely sure about the deception, between 16% and 25% of
participants who were not ‘compromised’ reported that they
were sure of the deception.

4.3 Drop-out rates
During the study, 136 participants began answering the

survey but dropped out before finishing. We have only par-
tial information about who these participants were and what
they did, but our instrumentation allowed us to know at

what point they dropped out of the study. Out of the 136
participants who did not complete the study, 6 were from
outside the United States and would not have been included
if they finished. 18 participants dropped during the consent
form (that is, they did not reach the first game), 56 dropped
during the first game (they did not see the second game),
23 dropped during the second game, and 33 dropped during
the third game. Out of these 33, two participants skipped
all the games (they checked the “I could not play this game”
checkboxes), 25 evaluated two games and dropped during
the third game (we don’t have evidence that these partici-
pants visited the gaming website or saw our spoofed dialog),
and finally 6 participants reached the third game, saw our
simulated dialog and interacted with it. Two of them did
not enter a password, returned to our survey, answered a
few more questions, and then dropped out; three of them
entered a password and never returned to the survey; and
finally one last participant entered a password, returned to
the survey, said that his or her password was real, and then
dropped out. We included these last 6 participants in our
analyses reported above.

4.4 Reasons for suspecting spoofing
We asked participants with suspicions to explain them to

us. For many participants, especially Mac OS users, the
empty username field was a source of suspicion. If an at-
tacker can obtain the user’s username, the credibility of that
spoofed window, and the compromise rate, would likely rise.

Some participants found ways to test whether the spoofed
credential-entry window was real, sometimes using techniques
we had not anticipated. One Mac OS participant used Ex-
posé, which reveals the set of OS-level windows, to see that
the credential-entry window was only present within the
browser. Other Mac OS participants noticed that we had
failed to center the spoofed dialog on their screens and knew
that the genuine dialog is centered. Some participants in the
Windows UAC treatment group were familiar with UAC and
knew their computers were configured such that they would
not request a password to complete an elevation. In the
words of a participant, “when i installed silverlight before it
didn’t ask for a password.” Similarly, other participants were
aware that their account did not have administrator rights.
In the words of another participant, “Microsoft Silverlight is
not installed on my computer, and I am not the ‘Adminis-
trator’ of this computer so I did not know the password. If
I had known the password, I probably would have entered it
and not thought anything about it.”

Removing paths through which users can close a credential-
entry window also raised suspicions among some partici-
pants on both Mac OS and Windows. For example, a Mac
OS participant reported that the spoofed window “didn’t
have the clean Apple ‘look’ [and] didn’t have an available can-
cel button.” Changing the appearance of the window close
box and removing the cancel button may have provided a
visual clue that the window was fake. Disabling such func-
tionality more subtly (e.g. by making active-looking but-
tons non-functional) might increase compromise rates, as
the only users who would be alerted to the difference would
be those who had already decided to close the window (and
thus would not be entering their credentials). Some fraction
of those users might then decide to enter their credentials if
they believed it was the only way to dismiss the window.

Finally, a handful of participants, familiar with research

Table 2: Disaggregated data for the attack rates, per condition.

studies, were not fooled by the study scenario and the sub-
terfuge of the fake site. One wrote: “I’m taking a psychology
study. I just figured it was part of the study.”

4.5 Follow-up experiment
We performed a second experiment to more tightly bound

our estimate of the efficacy of one of our most effective at-
tacks: UAC1. We collected data for 199 participants during
two solicitation periods on July 20 and 25 of 2012—a four-
fold increase in the number of participants per treatment.
In both sessions our participant quotas were met within a
matter of a few hours, in contrast to our earlier study which
was offered over a greater diversity of times-of-day. Par-
ticipants’ demographic data were virtually identical in both
experiments. In the second experiment participants were an
average of 29 years old with a σ = 9.7 years (vs. 28 years
old, σ = 9.6), 53% were male (55% in the original), 77%
were caucasian (78% in the original), and the top two re-
ported occupations were again ‘Student’ (28% vs. 33% in
the original) and ‘Currently Unemployed’ (16% vs. 13% in
the original). Participants took in average 19 min 57 sec to
complete the study with a σ =8 min 26 sec, vs. 17 min 23
sec with a σ =18 min 15 sec.

Out of 199 participants, 52 entered at least one character,
and 41 of them (21% of the total) later admitted it was a real
password in either the first or the second question described
earlier. Of those who did not proceed to enter characters
into the password field and were asked why, 63 (32% of the
total) indicated password-theft as a concern, causing us to
categorize them as wise. The remaining 95 (47% of the toal)
were deemed oblivious to the attack. The most frequently
invoked reason for not entering a password was ‘concern that
the software could damage their computers’, checked by 104
participants (52% of the total), and ‘not wanting to install
new software’, checked by 86 participants (43% of the total).

In this follow-up experiment, 24 participants did not com-
plete the survey, 6 of them being from outside the US. Of the
18 remaining, 14 dropped before getting to the third game.
Only one of the four remaining participants returned to the
survey after having seen the spoofed dialog; we don’t have
evidence that the other three actually saw the dialog.

The compromise rate in the follow-up experiment (21%)
was lower than for the same treatment in the original ex-
periment (27%), although the difference is not significant
(χ2(1) = 0.429, p = 0.5125). Figure 6 displays the 95% con-
fidence intervals for the compromise rates observed in this
experiment.

5. LIMITATIONS
As with any experiment, our study has limitations that

may cause our results to differ from the results of a real

attack, including the 5% attack efficacy results for scareware
campaigns previously reported by Cova et al. [3, 4].

Our participants were drawn from the population of users
of Mechanical Turk who accepted our HIT. This population
may differ in important ways from the populations targeted
in certain attacks. For example, an attacker targeting a
software security company might compromise a smaller pro-
portion of users than were compromised in our experiments,
as such individuals may be more likely to detect spoofed
windows. Mechanical Turk users may be more or less likely
to be using personal (as opposed to a work) accounts and
thus the vigilance with which they protect their credentials
may differ from the populations targeted in real attacks.

Some factors may have made our simulated attacks more
likely to result in a compromise than a real spoofing at-
tack. For example, participants may have recognized the
name of our institution in the initial consent disclosure and
assumed that researchers would not direct them to an un-
safe third-party site. Participants may also have mistyped
their credentials but reported that they had entered their
valid credentials. Additionally, convincing users to maxi-
mize their browser, or doing it for them, may be essential
to achieving the compromise rates we saw. However, we did
not see evidence of this when we compared the CredUI-D*
and CredUI conditions. Attackers may be unable to con-
vince users to maximize windows without causing suspicion.

It is also possible that attackers could achieve compromise
rates much higher than those we saw in our experiments. An
attacker who could provide a more compelling scenario for
entering credentials might be able to compromise many of
those users who would not be compromised by our treat-
ments. A real attacker need not repeat mistakes we made
when learning to spoof these interfaces, such as using the
word ‘Username’ instead of ‘User name’ in Windows and
failing to center the Mac OS credential-entry dialog. A real
attacker spoofing an installation of Silverlight might put a
Silverlight object on the page to detect whether Silverlight
was already installed and to identify the current version.

In considering the results of our study, one must also con-

Figure 6: Attack efficacy for second experiment, along
with 95% confidence intervals. 20.6±5.6% of participants
were compromised, 31.7±6.5% were wise to the attack, and
47.7±6.9% were oblivious to the attack.

sider that the consequences of a compromise vary widely
based on what they are used for. If the user’s device blocks
all forms of remote access, the compromise of device creden-
tials may be of no consequence. If the credentials are for
the user’s account on an enterprise network, and that enter-
prise offers remote access to the network, computing, and
services (e.g. email, payroll, etc.), the consequences could
be significant. If the user employs the same credentials for
other accounts, the consequences may extend even further.

6. RELATED DEFENSES
Operating system designers have been aware of the need

to defend against trusted-path vulnerabilities since at least
as far back as the early 1970’s when Saltzer and Schroeder
presented the need for a ‘secure’ path in the context of a sce-
nario in which a user grants permissions (capabilities): “one
thing is crucial–that there be a secure path from Doe, who
is authorizing the passing of the capability, to the program,
which is carrying it out.” More recently, Ka-Ping Yee de-
scribed trusted path as requiring “an unspoofable and faith-
ful communication channel between the user and any en-
tity trusted to manipulate authorities on the user’s behalf.”
Yee highlighted the secure attention sequence in Windows
(ctrl-alt-delete) as an example solution to the trusted path
problem for credential entry [31].

Many of the defenses that protect users from spoofing at-
tacks today rely on detecting bogus emails and blacklisting
software and websites; they do not address the underlying
trusted path problem. Such defenses are necessary because
preventing spoofing not only requires a technology to sup-
port a trusted path, but a change in user behavior to avoid
untrusted paths. Users must unlearn the habit of provid-
ing credentials into windows they they cannot authenticate.
This will require time and a clear set of rules that users can
apply to reliably differentiate the OS from other principals.

There are three major categories of solutions to establish
trusted paths: dedicated IO, visualizations of shared secrets,
and secure attention sequences.

6.1 Dedicated IO
One way to establish a trusted channel between the user

and an OS is to dedicate specific hardware, or portions of
hardware, to be used exclusively for that channel. For ex-
ample, a device could dedicate a screen and separate keypad
for use in authentication, as is sometimes done in payment
systems. Others employ a separate input and output de-
vice that the user may already have. For example, Parno et
al.’s Phoolproof Phishing scheme employs the user’s mobile
phone to externally confirm websites when entering a pass-
word [20] and IBM’s Zone Trusted Information Channel pro-
vides an external trusted path for banking operations [24].

Enabling users to communicate securely with a single prin-
cipal need not necessarily require both a dedicated input and
output device. A dedicated output, such as an LED or ded-
icated screen region, may be sufficient to indicate when a
trusted path is present. A dedicated input device may be
sufficient to force a trusted path to be established, or may
itself be used for the sole purpose of entering credentials.

Many systems attempt to establish trusted paths by ded-
icating pixels within a window to host trust indicators that
indicate the presence of a trusted path. For example, the
“chrome” region in browsers is the portion of the browser
window that is not controlled by the website being rendered,

and has been used to host indicators that activate when a
connection is secure or that display the domain name of a
website. However, users can still be confused about whether
a window is real or fake. For example, Jackson et al. demon-
strated that users will trust spoofed chrome elements that
appear in a browser window that is itself spoofed, rendered
within the content region of a genuine browser window [13].
This is known as a picture-in-picture attack.

Operating systems sometimes use visual cues to differen-
tiate active windows (those ‘in focus’) from inactive ones,
in part to defend against picture-in-picture attacks. For ex-
ample, some systems render the frames of foreground win-
dows to appear darker than background windows. An astute
user might notice that our window in a picture-in-picture
attack remain active. Secure windows management systems
EROS [25] and Nitpicker [10] dim all windows except the
application currently in use and clearly label windows to
help prevent users from accidentally entering information
into the incorrect application. The results of our experi-
ment raise doubts as to whether dimming the screen is an
effective way to establish a trusted path, and if an entire
window can be spoofed, the labels inside can be as well.

6.2 Visualizations of shared secrets
While operating systems allow other principals to use the

screen, they can usually ensure that they themselves can
render data to the screen without it being intercepted by
other applications. Thus, if the operating system and user
share a secret, the OS can display this secret with reasonable
confidence that other principals will not learn it. Shared se-
cret schemes work much in the same way a dedicated output
device does, but instead of lighting up a dedicated set of pix-
els to signal a trusted path, the OS renders a representation
of the shared secret.

Tygar and Whitten propose “requir[ing] the consumer to
personalize the appearance of the software at the time the
trust relationship is formed” for this purpose [28]. Similarly,
Adelsbach et al. suggest personalizing security indicators
in the browser interface [1]. Dhamija and Tygar’s Dynamic
Security Skins tool displays a user-selected photograph in
windows requesting or providing security information, al-
lowing users to verify that the window was produced by the
web browser and not a website [5]. In Herzberg and Jbara’s
Trustbar, users assign names or logos for each website, and
these are later shown to confirm that the users are again at
the same website [11].

Other solutions use secrets that are not directly controlled
by the user. Ye et al. present a colored border for windows to
indicate when these windows are controlled by the browser.
The border format dynamically changes to match a browser-
controlled metadata window [30].

The security of shared secret schemes rests on the assump-
tions that users will be able to recognize the shared secret,
notice when the shared secret is absent, and realize there is
no trusted path when the shared secret is absent. Shared
secret schemes may be attacked by convincing users to dis-
regard an invalid or missing secret. For example, Schechter
et al. demonstrated an attack against the Passmark shared-
secret scheme used for online banking in which users were
told that their shared secret was temporarily unavailable due
to system maintenance [23].

6.3 Secure attention sequences
Just as shared secrets leverage the operating systems’ ulti-

mate control over output devices, secure attention sequences
leverage their ability to capture and prioritize input events.
For example, on Windows the key combination of ctrl-alt-
delete is captured by the operating system, and triggers the
establishment of a trusted path to the OS, regardless of what
applications are running. Since Windows NT, the OS has
required that users unlock their computer with this sequence
of keys, a secure attention sequence, before logging into the
device. This sequence stops the execution of other processes,
ensuring the existence of a trusted path for the authentica-
tion process [12]. Alas, Windows does not explicitly tell
users not to enter their passwords without typing the se-
cure attention sequence, and legitimate applications often
ask users to do so.

A number of phishing prevention mechanisms have been
used as secure attention sequences, including a 2005 pro-
posal by Ross et al. [22]. Libonati et al. performed a field
study to measure the efficacy of secure attention sequences
in protecting web logins. No mechanism came close to being
foolproof, even though participants in the study knew that
they were being tested on their abilities to protect them-
selves from attacks, and given incentives to protect their
passwords [17].

In summary, solving the trusted path problem is daunting.
Providing dedicated input or output devices for authentica-
tion is impractical: It is costly, consumes device space, and
would require a redesign of myriad devices. Trusted chrome
has proven too easily spoofable. Establishing a trusted path
via users’ existing mobile devices for authentication simply
passes the buck onto another general computing platform,
which may also be vulnerable to spoofing attacks. Users
forget to enter secure attention sequences when they don’t
appear to be necessary.

7. A PATH FORWARD?
The challenge in developing strategies to address the trusted

path problem is that one cannot use lab studies, or even
short-term field studies, to prove these strategies are re-
silient to attack. Users are habituated to security rituals
over time through repeated conditioning. To study how par-
ticipants respond to attacks, researchers must study partici-
pants who are already conditioned. In other words, proving
that a trusted path ritual will resist real-world attacks re-
quires deploying the ritual into the hands of users who will
be relying on it to do so.

Given the extreme costs of establishing the security of a
trusted path ritual, we think it’s essential to learn as much
as possible from what isn’t working today. Relying on subtle
cues to establish that a Window belongs to the OS does not
seem to work.

The failures of individual trusted path mechanisms sug-
gest that the problem is unlikely to be addressed adequately
by any single mechanism. Rather, future work may focus
on rituals that combine mechanisms. For example, consider
rituals in which users must first enter a shared attention se-
quence and then expect to see a visual shared secret. These
two mechanisms may complement each other: the expec-
tation of a visual shared secret may make it harder for an
attacker to trick the user into entering a password (or per-
forming a security-sensitive action) without first providing

the secure attention sequence to make the visual shared se-
cret appear. The secure attention sequence may make it
harder to trick the user into believing the visual shared se-
cret is unnecessary—the user need only enter the secure at-
tention sequence to check if it can be made to appear.

Finally, even if a trusted path ritual can be created, the ex-
istence of the ritual alone will be insufficient to protect users.
So long as users are regularly asked to provide credentials
or perform security-critical actions via other paths, they will
be habituated to do so when the next attack comes.

8. CONCLUSION
Only a minority of participants in our study recognized

that a spoofed operating system credential-entry window
was an attempt to steal their passwords. In our most ef-
fective attacks, more than 20% of Windows users entered
usernames and passwords into a spoofed UAC window, later
admitting that these were genuine device-login credentials.
Providing a trusted path through which users can enter cre-
dentials securely is not in itself sufficient to prevent such
attacks. Rather, operating systems must also forbid the col-
lection of device-login credentials through less secure paths
(e.g. spoofable windows), lest users become habituated to
entering credentials when straying off the trusted path.

Acknowledgements
The authors want to thank John Douceur (Microsoft Re-
search), Serge Egelman (UC Berkeley), David Molnar (Mi-
crosoft Research), Rob Reeder (Microsoft), Adam Shostack
(Microsoft) and the anonymous reviewers for their helpful
reviews and suggestions on early versions of the paper. This
research was funded in part by NSF grants CNS0831428,
CNS1116934, and DGE090365.

9. REFERENCES
[1] Adelsbach, A., Gajek, S., and Schwenk, J.

Visual spoofing of SSL protected web sites and
effective countermeasures. Information Security
Practice and Experience (2005), 204–216.

[2] Bravo-Lillo, C., Cranor, L. F., Downs, J., and
Komanduri, S. Bridging the gap in computer security
warnings: A mental model approach. IEEE Security &
Privacy Magazine 9, 2 (Mar. 2011), 18–26.

[3] Cova, M. Personal corresponence, May 5, 2012.

[4] Cova, M., Leita, C., Thonnard, O., Keromytis,
A. D., and Dacier, M. An analysis of rogue AV
campaigns. In Proceedings of the 13th International
Symposium on Recent Advances in Intrusion
Detection (RAID 2010) (Sept. 2010), pp. 442–463.

[5] Dhamija, R., and Tygar, J. D. The battle against
phishing: Dynamic security skins. In Proceedings of
the 2005 Symposium on Usable Privacy and Security
(New York, NY, USA, 2005), SOUPS ’05, ACM,
pp. 77–88.

[6] Dhamija, R., Tygar, J. D., and Hearst, M. Why
phishing works. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(New York, NY, USA, 2006), CHI ’06, ACM,
pp. 581–590.

[7] Downs, J. S., Holbrook, M. B., and Cranor,
L. F. Decision strategies and susceptibility to
phishing. In Proceedings of the Second Symposium on
Usable Privacy and Security (New York, NY, USA,
2006), SOUPS ’06, ACM, pp. 79–90.

[8] Downs, J. S., Holbrook, M. B., Sheng, S., and
Cranor, L. F. Are your participants gaming the
system?: Screening mechanical turk workers. In
Proceedings of the 28th International Conference on
Human Factors in Computing Systems (New York,
NY, USA, 2010), CHI ’10, ACM, pp. 2399–2402.

[9] Felten, E. W., Balfanz, D., Dean, D., and
Wallach, D. S. Web spoofing: An Internet con
game. In 20th National Information Systems Security
Conference (Oct. 1996).

[10] Feske, N., and Helmuth, C. A nitpicker’s guide to
a minimal-complexity secure GUI. In Proceedings of
the 21st Annual Computer Security Applications
Conference (Washington, DC, USA, 2005), IEEE
Computer Society, pp. 85–94.

[11] Herzberg, A., and Gbara, A. Security and
identification indicators for browsers against spoofing
and phishing attacks. Cryptology ePrint Archive,
Report 2004/155, 2004. http://eprint.iacr.org/.

[12] Initializing Winlogin, 2012.
http://msdn.microsoft.com/en-us/library/

windows/desktop/aa375994(v=vs.85).aspx.

[13] Jackson, C., Simon, D. R., Tan, D. S., and
Barth, A. An evaluation of extended validation and
picture-in-picture phishing attacks. In Proceedings of
the 11th International Conference on Financial
Cryptography and 1st International Conference on
Usable Security (Berlin, Heidelberg, 2007),
FC’07/USEC’07, Springer-Verlag, pp. 281–293.

[14] Kerr, K. Defend your apps and critical user info with
defensive coding techniques. MSDN Magazine (Nov.
2004).
http://msdn.microsoft.com/en-us/magazine/cc163883.aspx.

[15] Lefranc, S., and Naccache, D. Cut-&-paste
attacks with java. In Proceedings of the 5th
International Conference on Information Security and
Cryptology (Berlin, Heidelberg, 2003), ICISC’02,
Springer-Verlag, pp. 1–15.

[16] Li, T.-Y., and Wu, Y. Trust on web browser: Attack
vs. defense. In Applied Cryptography and Network
Security, J. Zhou, M. Yung, and Y. Han, Eds.,
vol. 2846 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2003, pp. 241–253.
10.1007/978-3-540-45203-4 19.

[17] Libonati, A., McCune, J. M., and Reiter, M. K.
Usability testing a malware-resistant input
mechanism. In Proceedings of the 18th Annual
Network & Distributed System Security Symposium
(NDSS11) (Feb. 2011).

[18] Microsoft Corporation. What is user account
control? http://windows.microsoft.com/en-US/windows-vista/

What-is-User-Account-Control.

[19] Nodder, C. Users and trust: A microsoft case study.
In Security and Usability: Designing Secure Systems
That People Can Use, L. F. Cranor and S. L.
Garfinkel, Eds., first ed., Theory in practice. O’Reilly

Media, Inc., Sebastopol, CA, USA, 2005, ch. 29,
pp. 589–606.

[20] Parno, B., Kuo, C., and Perrig, A. Phoolproof
phishing prevention. In Proceedings of the Financial
Cryptography and Data Security 10th International
Conference (2006), FC’06.

[21] Rajab, M. A., Ballard, L., Mavrommatis, P.,
Provos, N., and Zhao, X. The nocebo* effect on the
web: An analysis of fake anti-virus distribution. In
Proceedings of the 3rd USENIX Conference on
Large-Scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and More (Berkeley, CA, USA,
2010), LEET’10, USENIX Association, pp. 3–3.

[22] Ross, B., Jackson, C., Miyake, N., Boneh, D.,
and Mitchell, J. C. Stronger password
authentication using browser extensions. In
Proceedings of the Proceedings of the 14th Usenix
Security Symposium (Aug. 2005).

[23] Schechter, S. E., Dhamija, R., Ozment, A., and
Fischer, I. The emperor’s new security indicators. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2007), IEEE
Computer Society, pp. 51–65.

[24] ”Security-on-a-Stick” to protect consumers and banks
from the most sophisticated hacker attacks, October
2008. http://www.zurich.ibm.com/news/08/ztic.html.

[25] Shapiro, J. S., Vanderburgh, J., Northup, E.,
and Chizmadia, D. Design of the EROS trusted
window system. In Proceedings of the 13th Conference
on USENIX Security Symposium (Berkeley, CA, USA,
2004), SSYM’04, USENIX Association, pp. 12–12.

[26] Stone-Gross, B., Abman, R., Kemmerer, R. A.,
Kruegel, C., Steigerwald, D. G., and Vigna, G.
The underground economy of fake antivirus software.
In Workshop on Economics of Information Security
(WEIS) (June 2011).

[27] Symantec Corporation. Symantec report on rogue
security software, Oct. 2009.

[28] Tygar, J. D., and Whitten, A. WWW electronic
commerce and Java trojan horses. In Proceedings of
the Second USENIX Workshop on Electronic
Commerce (Berkeley, CA, USA, 1996), vol. 2,
USENIX Association, pp. 15–15.

[29] Ye, E., Yuan, Y., and Smith, S. Web spoofing
revisited: SSL and beyond. Tech. Rep. TR2002-417,
Dartmouth College, 2002.

[30] Ye, Z. E., Smith, S., and Anthony, D. Trusted
paths for browsers. In Proceedings of the 11th
USENIX Security Symposium (2002), pp. 263–279.

[31] Yee, K.-P. User interaction design for secure systems.
In Proceedings of the 4th International Conference on
Information and Communications Security (London,
UK, 2002), ICICS ’02, Springer-Verlag, pp. 278–290.

APPENDIX
A. PARTICIPANT SOLICITATION
Researchers at Carnegie Mellon University are conducting
a set of brief surveys about online games. You will have
to play three online games, and then answer a short survey
giving us your opinion about each game. The whole survey
should take you about 20 minutes. We will pay you $1.00
for your participation.
Requisites to participate:

1. You must be 18 years old or older.

2. You must be in the United States while you take the
survey.

3.w [shown only to users Windows clients]
You must use Microsoft Windows Vista or Windows
7. We will not pay you if you use another operating
system, or an older version of Microsoft Windows (like
Windows XP). You don’t have to use MS Internet Ex-
plorer, but if you do you must use Internet Explorer 8
or higher.

3.m [shown only to users of MacOS clients]
You must use Apple MacOS to participate. We will not
pay you if you use another operating system.

3. You cannot take this survey twice. Please click here to
check if you have taken this survey before.

To be paid, follow these steps:

1. Go to: http://saucers.cups.cs.cmu.edu/yacot/mnt/wtk/survey.

php?i=workerID

2. After completing the survey you will receive a confirma-
tion code in the last page. Enter the code in the box
below and we will approve your payment. Please do
not enter the code more than once. If you are not sure
about having entered the code correctly, please send
us a message and we will solve the problem as soon as
possible.

B. EXAMPLE GAME EVALUATION FORM
Instructions to evaluate the game:

1. While pressing CTRL/Command on your keyboard click
on the link below to open the game in a new tab of your
browser.

2. Click on the button ”Click to play online” on the left of
your screen. Wait for the game to load.

3. When the game has loaded completely, play the game
”Mars Buggy Online” for about 2 to 3 minutes.

4. Return to this survey to answer the questions below.

Assigned game N: Mars Buggy Online
http://www.gametop.com/online-free-games/mars-
buggy-online/
(Press CTRL/Command while clicking this link)
Attention: The website whose URL appears above
is external to this study. Our researchers do not
control its content.

If you are not able to download or install the game above,
please check the box below and then click ’Next’ on the
bottom of the page. You will be assigned a new game to
evaluate.
� I was not able to download or install the game, please
assign me another game to evaluate.
Please tell us briefly why you were not able to play the game:
(required open text)

Please enter here a one-sentence description of the game you
played (between 10 and 50 words): (optional open text)

Please answer the following questions about the game you
played:

Have you ever played this game before?
© Yes
© No

Do you think this game is appropriate for children between
4 and 8 years old?
© Yes
© No

Do you think this game is appropriate for pre-teenagers be-
tween 9 and 12 years old?
© Yes
© No

Do you think this game is appropriate for teenagers between
13 and 17 years old?
© Yes
© No

Do you think this game is fun?
© Yes
© No

